LEADER 00000nam a22004695i 4500
001 978-3-642-34836-5
003 DE-He213
005 20151204141812.0
007 cr nn 008mamaa
008 130706s2013 gw | s |||| 0|eng d
020 9783642348365|9978-3-642-34836-5
024 7 10.1007/978-3-642-34836-5|2doi
040 ES-ZaU
072 7 RGW|2bicssc
072 7 TEC036000|2bisacsh
082 04 910.285|223
100 1 Luo, Xiaoguang.|eauthor.
245 10 GPS Stochastic Modelling|h[electronic resource] :|bSignal
Quality Measures and ARMA Processes /|cby Xiaoguang Luo.
260 1 Berlin, Heidelberg :|bSpringer Berlin Heidelberg :
|bImprint: Springer,|c2013.
300 XXIII, 331 p. 129 illus., 127 illus. in color.|bonline
resource.
336 text|btxt|2rdacontent
337 computer|bc|2rdamedia
338 online resource|bcr|2rdacarrier
347 text file|bPDF|2rda
490 1 Springer Theses, Recognizing Outstanding Ph.D. Research,
|x2190-5053
490 0 Springer eBooks.|aEarth and Environmental Science
505 0 Introduction -- Mathematical Background -- Mathematical
Models for GPS Positioning -- Data and GPS Processing
Strategies -- Observation Weighting Using Signal Quality
Measures -- Results of SNR-based Observation Weighting --
Residual-based Temporal Correlation Modelling -- Results
of Residual-based Temporal Correlation Modelling --
Conclusions and Recommendations -- Quantiles of Test
Statistics -- Derivations of Equations -- Additional
Graphs -- Additional Tables.
520 Global Navigation Satellite Systems (GNSS), such as GPS,
have become an efficient, reliable and standard tool for a
wide range of applications. However, when processing GNSS
data, the stochastic model characterising the precision of
observations and the correlations between them is usually
simplified and incomplete, leading to overly optimistic
accuracy estimates. This work extends the stochastic model
using signal-to-noise ratio (SNR) measurements and time
series analysis of observation residuals. The proposed SNR
-based observation weighting model significantly improves
the results of GPS data analysis, while the temporal
correlation of GPS observation noise can be efficiently
described by means of autoregressive moving average (ARMA)
processes. Furthermore, this work includes an up-to-date
overview of the GNSS error effects and a comprehensive
description of various mathematical methods.
650 0 Geography.
650 0 Remote sensing.
650 0 Mathematical physics.
650 14 Geography.
650 24 Remote Sensing/Photogrammetry.
650 24 Mathematical Applications in the Physical Sciences.
650 24 Signal, Image and Speech Processing.
710 2 SpringerLink (Online service)
773 0 |tSpringer eBooks
776 08 |iPrinted edition:|z9783642348358
830 0 Springer Theses, Recognizing Outstanding Ph.D. Research,
|x2190-5053
856 40 |uhttps://cuarzo.unizar.es:9443/login?url=https://
dx.doi.org/10.1007/978-3-642-34836-5|zAcceso al texto
completo
© Biblioteca Universidad de Zaragoza. Edificio Paraninfo, 50005 ZARAGOZA-ESPAÑA| Tfno.: +34 976-761 854